

Weakly-supervised /image manipulation detection

> Typical image manipulations

They typically have pixel-level masks

Splicing [Sharma et al.]

Inpainting [Trung et al.]

Copy-move [Mahdi et al.]

Emerging editing methods do not necessarily generate such masks

Language-guided editing [Wang et al.]

Sketch-based editing [Zeng et al.]

- > New task: weakly-supervised image manipulation detection (W-IMD)
 - Given only **binary image-level labels** (real or fake), predict whether an image is manipulated, and localize the manipulation at the pixel level.
 - Such a paradigm eliminates the need for pixel-level masks, and can quickly adapt to novel manipulations without such annotations

Towards Generic Image Manipulation Detection with Weakly-Supervised Self-Consistency Learning Yuanhao Zhai, Tianyu Luan, David Doermann, Junsong Yuan

University at Buffalo Weakly-supervised self-consistency

PARIS

Results

CASIAv1			Columbia			Coverage				IMD2020				Avg		
Spe.	Sen.	I-F1	AUC	Spe.	Sen.	I-F1	AUC	Spe.	Sen.	I-F1	AUC	Spe.	Sen.	I-F1	AUC	I-F1
0.000	1.000	0.000	0.500	0.000	1.000	0.000	0.500	0.000	1.000	0.000	0.500	0.000	1.000	0.000	0.500	0.000
0.000	1.000	0.000	0.344	0.000	1.000	0.000	0.525	0.000	1.000	0.000	0.500	0.000	1.000	0.000	0.500	0.000
0.000	1.000	0.000	0.701	0.000	1.000	0.000	0.491	0.000	1.000	0.000	0.719	0.000	1.000	0.000	0.513	0.000
0.224	0.930	0.361	0.783	0.246	0.961	0.392	0.566	0.070	0.967	0.131	0.617	0.112	0.936	0.200	0.683	0.271
0.011	0.994	0.022	0.502	0.011	1.000	0.022	0.515	0.000	1.000	0.000	0.505	0.008	0.998	0.014	0.506	0.019
0.328	0.762	0.459	0.849	0.373	0.782	0.505	0.572	0.093	0.902	0.169	0.721	0.132	0.872	0.229	0.693	0.157
0.844	0.717	0.775	0.762	0.322	0.950	0.481	0.541	0.100	0.900	0.180	0.746	0.100	0.981	0.182	0.711	0.404
0.538	0.569	0.553	0.807	0.220	0.732	0.338	0.542	0.062	0.793	0.115	0.578	0.116	0.886	0.205	0.644	0.303
0.795	0.690	0.738	0.920	0.519	0.983	0.680	0.584	0.440	0.714	0.544	0.733	0.221	0.966	0.360	0.766	0.580
0.458	0.542	0.496	0.773	0.127	0.902	0.223	0.560	0.077	0.746	0.140	0.665	0.126	0.832	0.219	0.660	0.270
0.638	0.726	0.679	<u>0.917</u>	0.324	0.948	<u>0.483</u>	0.591	0.220	0.838	<u>0.348</u>	0.701	0.193	0.872	<u>0.316</u>	<u>0.751</u>	<u>0.456</u>

Mathad	GIER	R [43]	IEdit	[45]	Avg		
Ivietnod	AUC	F1	AUC	F1	AUC	I-F1	
CAT-Net [22]	0.508	0.336	0.532	0.476	0.502	0.406	
FCN+DA [6]	0.507	0.428	0.539	0.489	0.523	0.458	
MVSS-Net [6]	0.510	0.325	0.537	0.522	0.523	0.423	
MIL-FCN [37] + WSCL	0.574	0.320	0.563	0.556	0.568	0.438	
L-FCN [37] + WSCL w/ fine-tune	0.621	0.533	0.617	0.602	0.619	0.568	

		Pixel-Leve	el F1	Combined F1						
CASIAv1	Columbia	Coverage	IMD2020	NIST16	Avg	CASIAv1	Columbia	Coverage	IMD2020	Avg
0.157	0.311	0.205	0.124	0.089	0.190	0.000	0.000	0.000	0.000	0.000
0.140	0.320	0.188	0.111	0.106	0.188	0.000	0.000	0.000	0.000	0.000
0.155	0.364	0.286	0.122	0.000	0.185	0.000	0.000	0.000	0.000	0.000
0.405	0.436	0.291	-	0.238	-	0.382	0.413	0.181	-	-
0.387	0.613	0.285	0.175	0.283	0.349	0.042	0.042	0.000	0.026	0.028
0.276	0.352	0.134	0.102	0.138	0.200	0.345	0.406	0.149	0.144	0.261
0.441	0.223	0.199	0.270	0.167	0.260	0.562	0.305	0.189	0.217	0.318
0.117	0.089	0.121	0.097	0.024	0.090	0.193	0.141	0.118	0.131	0.146
0.172	0.270	0.178	0.193	0.110	0.185	0.280	0.386	0.268	0.252	0.296
0.112	0.102	0.127	0.094	0.026	0.092	0.182	0.140	0.133	0.046	0.125
0.153	0.362	0.201	0.173	0.099	0.198	0.250	0.414	0.255	0.159	0.270