

Yuanhao Zhai¹, Kevin Lin², Zhengyuan Yang², Linjie Li², Jianfeng Wang², Chung-Ching Lin², David Doermann¹, Junsong Yuan¹, and Lijuan Wang² ¹State University of New York at Buffalo, ²Microsoft

Motivation

- Video diffusion models suffer from **slow sampling**
- Video datasets often have low-quality appearance
- **High-quality image datasets** are underutilized in video model training
- Begin How can we speed up video diffusion and improve video appearance quality?
- We present **motion consistency model**, a video diffusion distillation method that
 - Accelerate sampling
 - **Enhance frame appearance** by leveraging image datasets

Baseline

- Video latent consistency distillation (CD)
 - Learns to generate from the video dataset
- Frame-wise adversarial learning
 - Learns the appearance from the image dataset ۲

Motion Consistency Model: Accelerating Video Diffusion with

Disentangled motion consistency distillation

- Conflict objectives in baseline
 - CD also learns low-quality frame from the video dataset
 - Adversarial learning learns high-quality frame from images \bullet
- Begin How about disentangling motion and appearance learning
 - Extract motion from the video latent
 - Apply CD only on the motion (MCD)
- MCD only learns the motion
- Adversarial learning learns the appearance

Mixed trajectory distillation

- Training-inference discrepancy
 - Training: ODE trajectories sampled from low-quality video
 - Inference: sample in the high-quality video space •

Simulate inference-time ODE trajectories using multi-step sampling

- Represent high-quality appearance
- Apply MCD and adversarial learning on latents sampled from these trajectories
- Mixing the real- and generated-video ODE trajectories for training

Results

 $D \rightarrow \mathcal{L}_{adv}^{G}$

Quantitative results

Tea

Animat $512 \times$

ModelSco $256 \times$

High-resolution video generation (4 steps)

Pose-conditioned video generation (4 steps)

Frame quality improvement

acher	Method	FVD@Step↓				CLIPSIM@Step↑			
		1	2	4	8	1	2	4	8
eDiff [<mark>19</mark>] 512 × 16	DDIM [54]	4782	4350	2774	933	20.90	20.94	22.87	27.36
	DPM++ [37]	2004	1447	876	794	22.93	24.5	27.62	29.10
	LCM [38] (our impl.)	1276	1180	956	830	25.75	27.33	28.37	28.65
	AnimateLCM [61]	1578	1278	824	740	27.56	28.52	29.58	27.67
	AnimateDiff-Lightning [35]	1260	1259	892	932	27.38	28.77	29.12	28.77
	MCM (ours)	1197	1036	801	675	28.95	29.40	29.64	29.13
peT2V [<mark>62</mark>] 256 × 16	DDIM [54]	6459	2305	1445	841	21.49	20.33	22.57	26.76
	DPM++ [37]	2039	1336	467	552	23.48	24.85	28.51	29.70
	LCM [38] (our impl.)	1094	820	713	717	26.78	28.01	28.45	29.01
	MCM (ours)	501	434	414	482	28.37	29.02	28.86	28.28