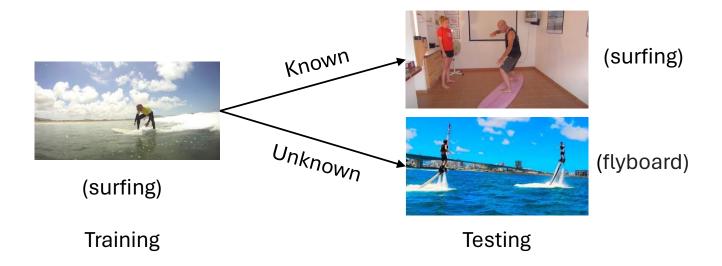


PARIS

SOAR: Scene-debiasing Open-set Action Recognition

Yuanhao Zhai¹, Ziyi Liu², Zhenyu Wu², Yi Wu², Chunluan Zhou²,

David Doermann¹, Junsong Yuan¹, Gang Hua²

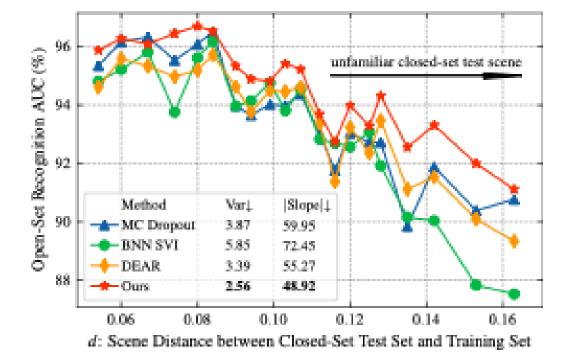

¹University at Buffalo ²Wormpex AI Research

Open-set action recognition

- Open-set action recognition (OSAR): two objectives
 - 1. Identify unknown new actions from the known actions (binary classification)
 - 2. Classify known actions (C-way classification)

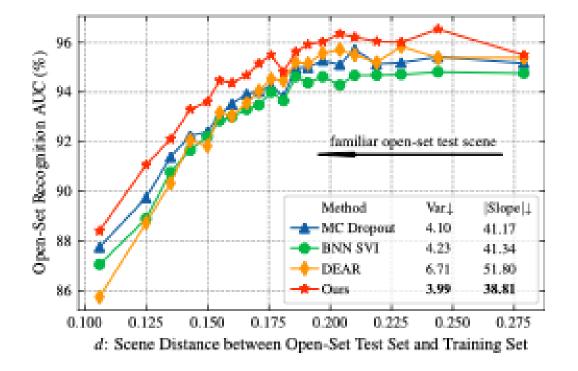

Scene bias in OSAR

- Existing datasets exhibit heavy scene bias, e.g., linear probing a scene classifier yields ~55% accuracy on UCF101
- Two typical scenarios that OSAR methods may fail


Unknown action in familiar scene

How OSAR methods are affected by the scene?

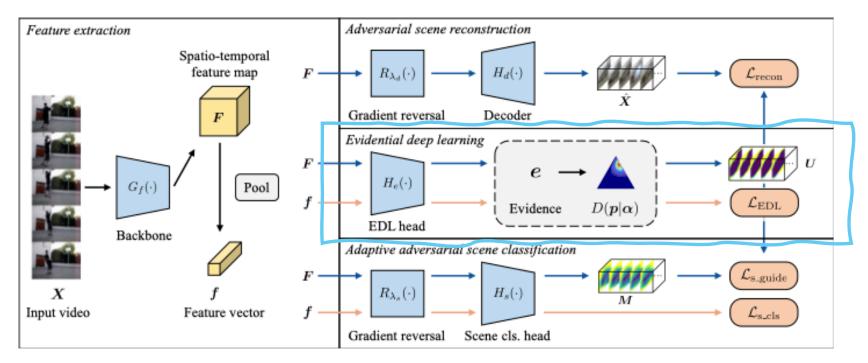
- We design an empirical experiment to quantitative analyze
 - Known action in unfamiliar scene
 - Unknown action in familiar scene
- Setup:
 - 1. Scene feature extraction for videos
 - 2. Scene similarity computation between training and testing videos
 - 3. Divide testing videos into subsets according to the scene similarity to the training set
 - 4. Measure OSAR performance on each subset


How OSAR methods are affected by the scene? (cont'd)

Known action in unfamiliar scene

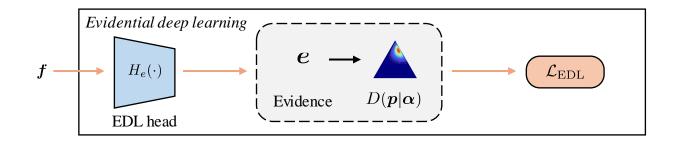
- As the scene from known actions gets more unfamiliar, the OSAR performances decreases
- Our method is the least affected by the scene

How OSAR methods are affected by the scene? (cont'd)

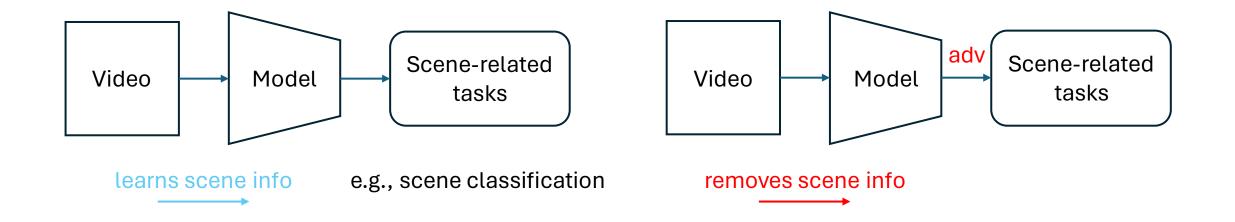


Unknown action in familiar scene

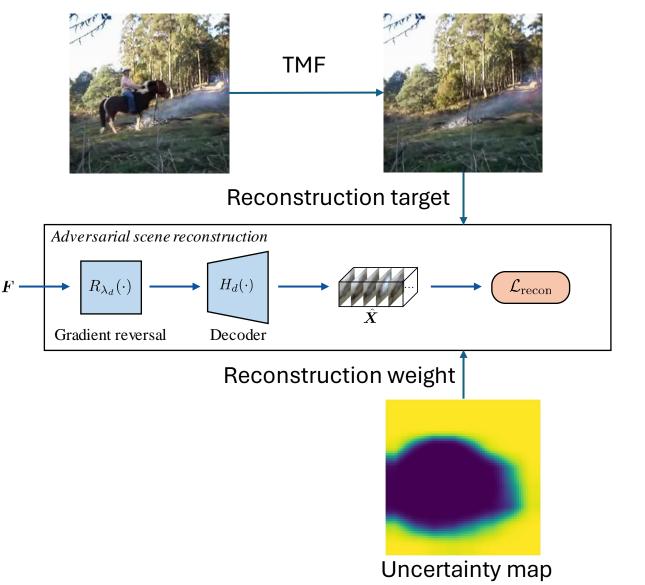
- As the scene from unknown actions gets more familiar, the OSAR performances decreases
- Our method is the also least affected by the scene


Scene-debiasing Open-set Action Recognition (SOAR)

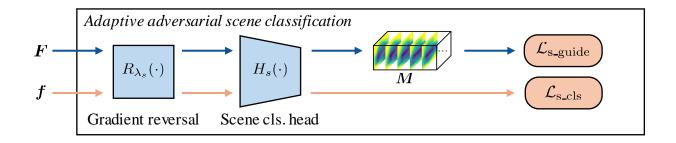
- Evidential deep learning baseline
- Adversarial scene reconstruction
- Adaptive adversarial scene classification


Evidential deep learning (EDL) baseline

- EDL predicts an uncertainty to measure the likelihood that the sample is unknown
 - 1. Evidence is predicted for each class
 - 2. A Dirichlet distribution is built based on the evidence
 - 3. Uncertainty is deterministically given via EDL


Scene-debiasing via adversarial learning

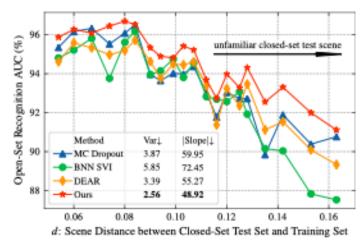
- Model learns scene information if it is trained towards scene-related tasks.
- Model learns to remove scene information if it is adversarially trained towards scene-related tasks.


Adversarial scene reconstruction

- Adversarially reconstruct the background
- Background estimation via temporal median filter (TMF)
 - Works well if background is static
- Uncertainty-weighted reconstruction to focus on the background regions
 - Helps on dynamic background

Adaptive adversarial scene classification

- Given input video, adversarially classify its scene
 - With a spatial uncertainty guidance to apply more weight on the scene regions

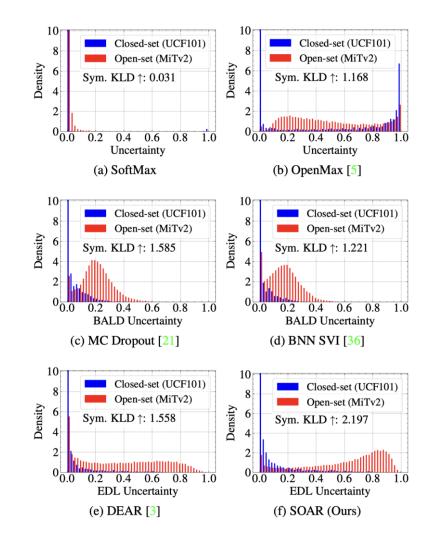


Experiments – comparison with SOTA

• Best OSAR and closed-set action recognition performances

Methods	UCF101 [63]+MiTv2 [45]				UCF101 [63]+HMDB51 [38]				Closed-set
	AUC ↑	FAR@95↓	TPR@10 ↑	Open maF1 ↑	AUC ↑	FAR@95↓	TPR@10 ↑	Open maF1 ↑	Accuracy
SoftMax	44.47	96.93	8.85	55.50 ± 0.45	44.34	97.91	3.66	73.13 ± 0.12	94.10
OpenMax [5]	63.96	45.89	3.78	66.21 ± 0.16	63.67	80.53	6.54	67.81 ± 0.12	56.54
MC Dropout [21]	93.66	25.43	85.72	68.12 ± 0.20	86.11	77.50	70.13	71.13 ± 0.15	94.13
BNN SVI [36]	93.16	25.88	79.36	67.96 ± 0.19	85.63	71.52	66.14	71.57 ± 0.17	93.89
DEAR [3]	93.52	29.53	84.03	75.12 ± 0.27	87.12	71.32	72.21	88.07 ± 0.20	93.97
SOAR (Ours)	94.60	25.33	86.47	76.22 ± 0.32	88.10	69.57	72.75	89.55 ± 0.22	95.24

• The least affected by the scene



Unknown action in familiar scene

Experiment – comparison with SOTA

 Best open-set/closed-set uncertainty separation (highest sym. KLD)

Contributions

- Design an empirical experiments to quantitatively analyze the scene bias
- Adversarial scene reconstruction & adaptive adversarial scene classification to reduce the learned scene information
- State-of-the-art OSAR performance, and effectively reduces scene bias

paper & code