
paper & code

## Towards Generic Image Manipulation Detection with Weakly-Supervised Self-Consistency Learning

**Yuanhao Zhai**, Tianyu Luan, David Doermann, Junsong Yuan University at Buffalo



#### Image manipulations



Splicing [Sharma et al.]



Copy-move [Mahdi et al.]



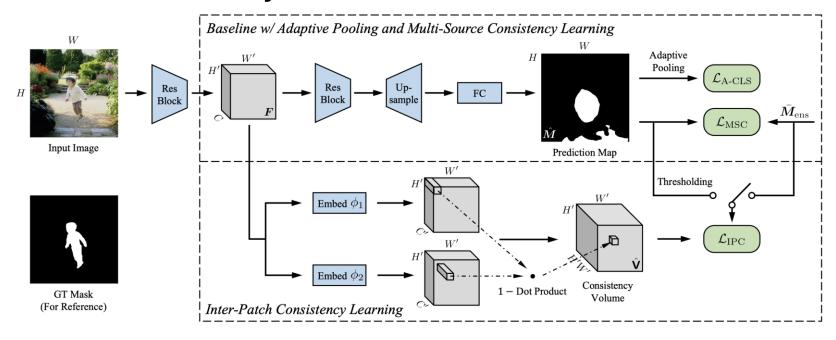
Inpainting [Trung et al.]

#### Image manipulations (cont'd)

- Splicing, copy-move and inpainting all have pixel-level masks
  - Detection model trained with pixel-level mask can precisely locate manipulations
- Emerging editing methods, such as language-guided or sketchbased methods, do not necessarily generate such masks

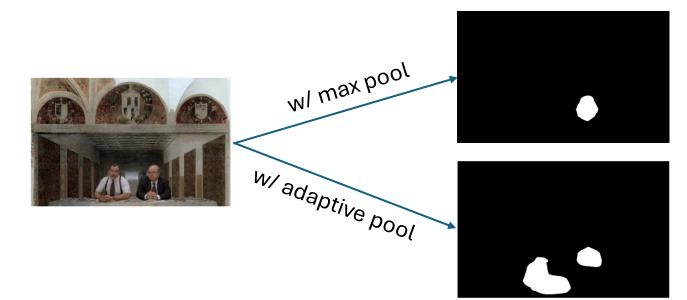


[WWAnes at.al.]



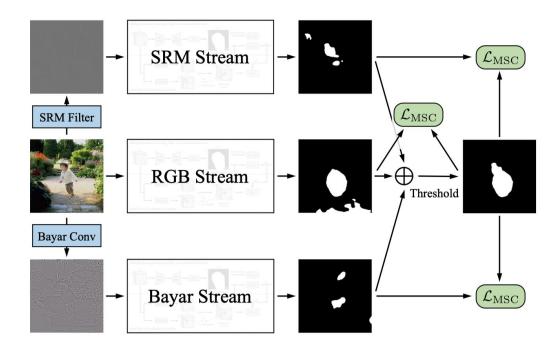

# Weakly-supervised image manipulation detection (W-IMD)

• Given only **binary image-level labels** (real or fake), predict whether an image is manipulated, and localize the manipulation at the pixel level.


#### Weakly-supervised self-consistency learning

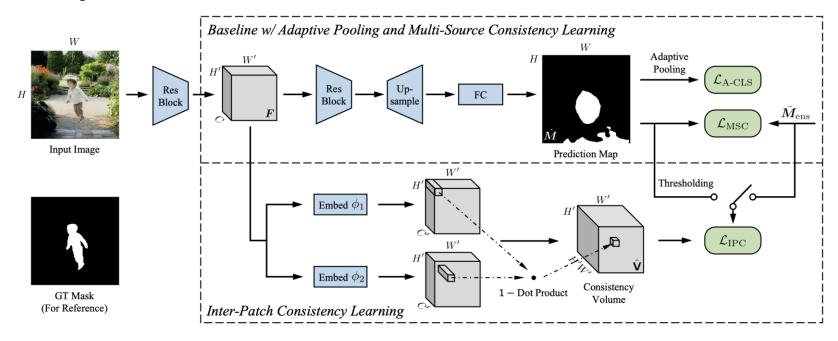
- Adaptive pooling
- Multi-source consistency
- Inter-patch consistency




#### Adaptive pooling

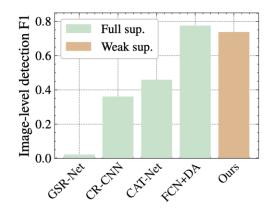
- Max-pooling can only detect the most salient manipulation
- Adaptive pooling dynamically selects the portion with high activations
  - Ostu's method for select the high-activation group
  - Average pooling on the high-activation group

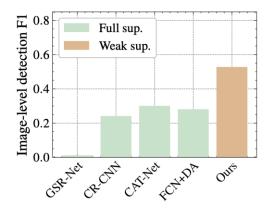



#### Multi-source consistency (MSC)

- Fuse information from different noise sources
- The ensemble prediction is in turn used as pseudo ground truth, and supervise each individual stream




#### Inter-patch consistency


- Global patch-patch similarity is computed by pair-wise patch feature dot product, and forms a 4D consistency volume
- The pseudo ground truth from MSC is used to supervise the consistency volume to enhance low-level feature



#### Image-level manipulation detection

- Best average AUC and F1
- Our method better generalizes to OOD manipulations





|   |             | Method                        | CASIAv1 |       |       | Columbia |       |       |       | Coverage |       |       |       | IMD2020 |       |       |       | Avg   |       |       |
|---|-------------|-------------------------------|---------|-------|-------|----------|-------|-------|-------|----------|-------|-------|-------|---------|-------|-------|-------|-------|-------|-------|
|   |             | Wethod                        | AUC     | Spe.  | Sen.  | I-F1     | AUC   | Spe.  | Sen.  | I-F1     | AUC   | Spe.  | Sen.  | I-F1    | AUC   | Spe.  | Sen.  | I-F1  | AUC   | I-F1  |
| - | 'n.         | NOI1 [29]                     | 0.500   | 0.000 | 1.000 | 0.000    | 0.500 | 0.000 | 1.000 | 0.000    | 0.500 | 0.000 | 1.000 | 0.000   | 0.500 | 0.000 | 1.000 | 0.000 | 0.500 | 0.000 |
|   | $rac{1}{2}$ | CFA1 [13]                     | 0.482   | 0.000 | 1.000 | 0.000    | 0.344 | 0.000 | 1.000 | 0.000    | 0.525 | 0.000 | 1.000 | 0.000   | 0.500 | 0.000 | 1.000 | 0.000 | 0.500 | 0.000 |
|   |             | Mantra-Net [55]               | 0.141   | 0.000 | 1.000 | 0.000    | 0.701 | 0.000 | 1.000 | 0.000    | 0.491 | 0.000 | 1.000 | 0.000   | 0.719 | 0.000 | 1.000 | 0.000 | 0.513 | 0.000 |
|   | _           | CR-CNN [57]                   | 0.766   | 0.224 | 0.930 | 0.361    | 0.783 | 0.246 | 0.961 | 0.392    | 0.566 | 0.070 | 0.967 | 0.131   | 0.617 | 0.112 | 0.936 | 0.200 | 0.683 | 0.271 |
|   | Full        | GSR-Net [65]                  | 0.502   | 0.011 | 0.994 | 0.022    | 0.502 | 0.011 | 1.000 | 0.022    | 0.515 | 0.000 | 1.000 | 0.000   | 0.505 | 0.008 | 0.998 | 0.014 | 0.506 | 0.019 |
|   |             | CAT-Net [22]                  | 0.630   | 0.328 | 0.762 | 0.459    | 0.849 | 0.373 | 0.782 | 0.505    | 0.572 | 0.093 | 0.902 | 0.169   | 0.721 | 0.132 | 0.872 | 0.229 | 0.693 | 0.157 |
|   |             | FCN+DA [6]                    | 0.796   | 0.844 | 0.717 | 0.775    | 0.762 | 0.322 | 0.950 | 0.481    | 0.541 | 0.100 | 0.900 | 0.180   | 0.746 | 0.100 | 0.981 | 0.182 | 0.711 | 0.404 |
| , | Weak        | MIL-FCN [37]                  | 0.647   | 0.538 | 0.569 | 0.553    | 0.807 | 0.220 | 0.732 | 0.338    | 0.542 | 0.062 | 0.793 | 0.115   | 0.578 | 0.116 | 0.886 | 0.205 | 0.644 | 0.303 |
|   |             | MIL-FCN [37] + WSCL           | 0.829   | 0.795 | 0.690 | 0.738    | 0.920 | 0.519 | 0.983 | 0.680    | 0.584 | 0.440 | 0.714 | 0.544   | 0.733 | 0.221 | 0.966 | 0.360 | 0.766 | 0.580 |
|   | ×           | Araslanov and Roth [1]        | 0.642   | 0.458 | 0.542 | 0.496    | 0.773 | 0.127 | 0.902 | 0.223    | 0.560 | 0.077 | 0.746 | 0.140   | 0.665 | 0.126 | 0.832 | 0.219 | 0.660 | 0.270 |
|   |             | Araslanov and Roth [1] + WSCL | 0.796   | 0.638 | 0.726 | 0.679    | 0.917 | 0.324 | 0.948 | 0.483    | 0.591 | 0.220 | 0.838 | 0.348   | 0.701 | 0.193 | 0.872 | 0.316 | 0.751 | 0.456 |

#### Novel manipulation detection

- Our weakly-supervised method can leverage weakly-annotated images for training
- After finetuning, our method outperforms fully-supervised counterparts


|       | Method                           | GIEF  | R [43] | IEdit | [45]  | Avg   |       |  |
|-------|----------------------------------|-------|--------|-------|-------|-------|-------|--|
|       | Method                           | AUC   | F1     | AUC   | F1    | AUC   | I-F1  |  |
| _     | CAT-Net [22]                     | 0.508 | 0.336  | 0.532 | 0.476 | 0.502 | 0.406 |  |
| E.:11 | FCN+DA [6]                       | 0.507 | 0.428  | 0.539 | 0.489 | 0.523 | 0.458 |  |
|       | MVSS-Net [6]                     | 0.510 | 0.325  | 0.537 | 0.522 | 0.523 | 0.423 |  |
| Wool  | MIL-FCN [37] + WSCL              | 0.574 | 0.320  | 0.563 | 0.556 | 0.568 | 0.438 |  |
| 11/2  | MIL-FCN [37] + WSCL w/ fine-tune | 0.621 | 0.533  | 0.617 | 0.602 | 0.619 | 0.568 |  |

#### Pixel-level manipulation localization

Reasonable pixel-level manipulation localization ability

|      | Method                        |         |          | el F1    | Combined F1 |        |       |         |          |          |         |       |
|------|-------------------------------|---------|----------|----------|-------------|--------|-------|---------|----------|----------|---------|-------|
|      | Wiethod                       | CASIAv1 | Columbia | Coverage | IMD2020     | NIST16 | Avg   | CASIAv1 | Columbia | Coverage | IMD2020 | Avg   |
| Un.  | NOI1 [29]                     | 0.157   | 0.311    | 0.205    | 0.124       | 0.089  | 0.190 | 0.000   | 0.000    | 0.000    | 0.000   | 0.000 |
| n    | CFA1 [13]                     | 0.140   | 0.320    | 0.188    | 0.111       | 0.106  | 0.188 | 0.000   | 0.000    | 0.000    | 0.000   | 0.000 |
|      | Mantra-Net [55]               | 0.155   | 0.364    | 0.286    | 0.122       | 0.000  | 0.185 | 0.000   | 0.000    | 0.000    | 0.000   | 0.000 |
| _    | CR-CNN [57]                   | 0.405   | 0.436    | 0.291    | -           | 0.238  | -     | 0.382   | 0.413    | 0.181    | -       | -     |
| 뭂    | GSR-Net [65]                  | 0.387   | 0.613    | 0.285    | 0.175       | 0.283  | 0.349 | 0.042   | 0.042    | 0.000    | 0.026   | 0.028 |
|      | CAT-Net [22]                  | 0.276   | 0.352    | 0.134    | 0.102       | 0.138  | 0.200 | 0.345   | 0.406    | 0.149    | 0.144   | 0.261 |
|      | FCN+DA [6]                    | 0.441   | 0.223    | 0.199    | 0.270       | 0.167  | 0.260 | 0.562   | 0.305    | 0.189    | 0.217   | 0.318 |
|      | MIL-FCN [37]                  | 0.117   | 0.089    | 0.121    | 0.097       | 0.024  | 0.090 | 0.193   | 0.141    | 0.118    | 0.131   | 0.146 |
| Weak | MIL-FCN [37] + WSCL           | 0.172   | 0.270    | 0.178    | 0.193       | 0.110  | 0.185 | 0.280   | 0.386    | 0.268    | 0.252   | 0.296 |
| ×    | Araslanov and Roth [1]        | 0.112   | 0.102    | 0.127    | 0.094       | 0.026  | 0.092 | 0.182   | 0.140    | 0.133    | 0.046   | 0.125 |
|      | Araslanov and Roth [1] + WSCL | 0.153   | 0.362    | 0.201    | 0.173       | 0.099  | 0.198 | 0.250   | 0.414    | 0.255    | 0.159   | 0.270 |

### Pixel-level manipulation localization



#### Contributions

- Propose the weakly-supervised image manipulation detection (W-IMD) task to adapt to new mask-free image editing techniques
- Propose weakly-supervised self-consistency learning (WSCL) for W-IMD, and it learns global multi-source information to detect the manipulation
- Strong image-level detection results, and reasonable localization

